Published in

Institute of Electrical and Electronics Engineers, Journal of Display Technology, 1(1), p. 105-111, 2005

DOI: 10.1109/jdt.2005.853361

Links

Tools

Export citation

Search in Google Scholar

Controlling Optical Properties of Electrodes With Stacked Metallic Thin Films for Polymeric Light-Emitting Diodes and Displays

Journal article published in 2005 by E. H.-E. Wu, Sheng-Han Li, Chieh-Wei Chen, Gang Li ORCID, Zheng Xu, Yang Yang
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A semi-transparent metallic film and a high optical absorbing film were constructed with stacking metallic films. Both films were used as cathodes for polymeric light-emitting diodes (PLEDs). The semi-transparent film was made of gold/aluminum/gold thin multilayers with its optical transparency of the device reaches as high as ∼70% in the visible region without capping layer, and the electrical sheet resistance reduces below 10 Ω/square. During illumination of the PLED, there was approximately 47% of light emitting from the top of the cathode surface, and 53% of light from the ITO side. The high optical absorbing film, also refer to as the black cathode, was constructed with four alternating layers of aluminum-silver, each aluminum or silver layer is 4 nm thick. The PLED with this black cathode demonstrated 126% enhancement of contrast under 1000 lx ambient illumination. The physical properties of these two cathodes were characterized by current-voltage measurement and atomic force microscopy. Ultraviolet-visible transmission spectroscopy and X-ray photoemission spectroscopy were also used to characterize the semi-transparent cathode and the black cathode respectively. For polymer light-emitting device, it is believed that morphology modification at each interface of the cathode plays a crucial role in determining the optical properties and conductivity of the over cathode.