Published in

Elsevier, Journal of the Neurological Sciences, 1-2(310), p. 256-260, 2011

DOI: 10.1016/j.jns.2011.07.021

Links

Tools

Export citation

Search in Google Scholar

Altered tryptophan metabolism in Parkinson's disease: A possible novel therapeutic approach

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Parkinson's disease (PD) is one of the most common disabling neurodegenerative diseases. Although several therapeutic approaches are available, there are two major unresolved issues: the lack of proved neuroprotective therapy and the treatment of L-dopa-induced motor complications. In the brain, 90% of the tryptophan is metabolized in the kynurenine pathway. Some of the intermediates, such as quinolinic acid and 3-hydroxy kynurenine, are neurotoxic, while others, such as kynurenic acid, are putative intrinsic neuroprotective compounds, mainly by acting as endogenous antagonists of ionotropic excitatory amino acid receptors. Alterations in the kynurenine pathway have been demonstrated in PD. Preclinical data suggest that intervention in the kynurenine pathway may result in neuroprotection and may alleviate L-dopa-induced dyskinesia. There are two alternative approaches for such intervention: the use of kynurenic acid analogues or pro-drugs, or modulation of the activities of the intrinsic enzymes of the pathway.