Published in

Nature Research, Scientific Reports, 1(5), 2015

DOI: 10.1038/srep13282

Links

Tools

Export citation

Search in Google Scholar

Isolation of Genetically Tractable Most-Wanted Bacteria by Metaparental Mating

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMetagenomics has rapidly advanced our inventory and appreciation of the genetic potential inherent to the gut microbiome. However it is widely accepted that two key constraints to further genetic dissection of the gut microbiota and host-microbe interactions have been our inability to recover new isolates from the human gut and the paucity of genetically tractable gut microbes. To address this challenge we developed a modular RP4 mobilisable recombinant vector system and an approach termed metaparental mating to support the rapid and directed isolation of genetically tractable fastidious gut bacteria. Using this approach we isolated transconjugants affiliated with Clostridium cluster IV (Faecalibacterium and Oscillibacter spp.), Clostridium cluster XI (Anaerococcus) and Clostridium XIVa (Blautia spp.) and group 2 ruminococci amongst others and demonstrated that the recombinant vectors were stably maintained in their recipient hosts. By a similar approach we constructed fluorescently labelled bacterial transconjugants affiliated with Clostridium cluster IV (including Flavonifractor and Pseudoflavonifractor spp.), Clostridium XIVa (Blautia spp.) and Clostridium cluster XVIII (Clostridium ramosum) that expressed a flavin mononucleotide-based reporter gene (evoglow-C-Bs2). Our approach will advance the integration of bacterial genetics with metagenomics and realize new directions to support a more mechanistic dissection of host-microbe associations relevant to human health and disease.