American Chemical Society, Inorganic Chemistry, 6(51), p. 3557-3571, 2012
DOI: 10.1021/ic202317f
Full text: Download
Three Co(II)-malonate complexes, namely, (C(5)H(7)N(2))(4)[Co(C(3)H(2)O(4))(2)(H(2)O)(2)](NO(3))(2) (1), (C(5)H(7)N(2))(4)[Co(C(3)H(2)O(4))(2)(H(2)O)(2)](ClO(4))(2) (2), and (C(5)H(7)N(2))(4)[Co(C(3)H(2)O(4))(2)(H(2)O)(2)](PF(6))(2) (3) [C(5)H(7)N(2) = protonated 2-aminopyridine, C(3)H(4)O(4) = malonic acid, NO(3)(-) = nitrate, ClO(4)(-) = perchlorate, PF(6)(-) = hexafluorophosphate], have been synthesized from purely aqueous media, and their crystal structures have been determined by single crystal X-ray diffraction. A thorough analysis of Hirshfeld surfaces and fingerprint plots facilitates a comparison of intermolecular interactions in 1-3, which are crucial in building supramolecular architectures. When these complexes are structurally compared with their previously reported analogous Ni(II) or Mg(II) compounds, a very interesting feature regarding the role of counteranions has emerged. This phenomenon can be best described as anion-induced formation of extended supramolecular networks of the type lone pair-π/π-π/π-anion-π/π-lone pair and lone pair-π/π-π/π-anion involving various weak forces like lone pair-π, π-π, and anion-π interactions. The strength of these π contacts has been estimated using DFT calculations (M06/6-31+G*), and the formation energy of the supramolecular networks has been also evaluated. The influence of the anion (NO(3)(-), ClO(4)(-), and PF(6)(-)) on the total interaction energy of the assembly is also studied.