Published in

American Institute of Mathematical Sciences (AIMS), Networks and Heterogeneous Media, 3(7), p. 429-440

DOI: 10.3934/nhm.2012.7.429

Links

Tools

Export citation

Search in Google Scholar

Effects of topology on robustness in ecological bipartite networks

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

High robustness of complex ecological systems in the face of species extinction has been hypothesized based on the redundancy in species. We explored how differences in network topology may affect robustness. Ecological bipartite networks used to be small, asymmetric and sparse matrices. We created synthetic networks to study the influence of the properties of network dimensions asymmetry, connectance and type of degree distribution on network robustness. We used two extinction strategies: node extinction and link extinction, and three extinction sequences differing in the order of species removal (least-to-most connected, random, most-to-least connected). We assessed robustness to extinction of simulated networks, which differed in one of the three topological features. Simulated networks indicated that robustness decreases when (a) extinction involved those nodes belonging to the most species-rich guild and (b) networks had lower connectance. We also compared simulated networks with different degree- distribution networks, and they showed important differences in robustness depending on the extinction scenario. In the link extinction strategy, the robustness of synthetic networks was clearly determined by the asymmetry in the network dimensions, while the variation in connectance produced negligible differences.