Published in

Oxford University Press, Plant & Cell Physiology, 4(52), p. 689-698, 2011

DOI: 10.1093/pcp/pcr028

Links

Tools

Export citation

Search in Google Scholar

ABA Controls H2O2 Accumulation Through the Induction of OsCATB in Rice Leaves Under Water Stress

Journal article published in 2011 by N. Ye, G. Zhu, Y. Liu, Y. Li, J. Zhang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The production of both ABA and H₂O₂ is induced by drought and can act as signals under stress conditions. We investigated the relationships between ABA, H₂O₂ and catalase (CAT) in rice leaves when rice seedlings were treated with polyethylene glycol as water stress treatment. As a key gene in ABA biosynthesis, OsNCED3 was significantly induced in rice by water stress treatment and such induction preceded the rapid increase in ABA. Water stress inhibited the expression of CATA and CATC but substantially enhanced the expression of CATB. Exogenously applied ABA promoted the expression of CATB also and inhibited the expression of CATC in a concentration-dependent manner. When ABA production was inhibited by using ABA biosynthesis inhibitors nordihydroguaiaretic acid and tungstate, expression of CATB was also subdued while CATC was enhanced under the water stress. Accumulation of H₂O₂ was also reduced when endogenous ABA production was inhibited and showed a correlation with the total activity of catalases. Our results suggest that water stress-induced ABA prevents the excessive accumulation of H₂O₂, through the induction of the expression of CATB gene during water stress.