Published in

Springer Nature [academic journals on nature.com], Cell Death & Differentiation, 7(13), p. 1057-1063, 2005

DOI: 10.1038/sj.cdd.4401794

Links

Tools

Export citation

Search in Google Scholar

Stress response in mesoangioblast stem cells

Journal article published in 2005 by F. Geraci, G. Turturici, D. Galli ORCID, G. Cossu, G. Giudice, G. Sconzo
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Stem cells are presumed to survive various stresses, since they are recruited to areas of tissue damage and regeneration, where inflammatory cytokines and cytotoxic cells may result in severe cell injury. We explored the ability of mesoangioblasts to respond to different cell stresses such as heat, heavy metals and osmotic stress, by analyzing heat shock protein (HSP)70 synthesis as a stress indicator. We found that the A6 mesoangioblast stem cells constitutively synthesize HSP70 in a heat shock transcription factor (HSF)-independent way. However, A6 respond to heat shock and cadmium treatment by synthesizing HSP70 over the constitutive expression and this synthesis is HSF1 dependent. The exposure of A6 to copper or to a hypertonic medium does neither induce HSP70 synthesis nor activation of HSF1, while a constitutive binding of constitutive heat shock element binding factor was found. Together, these data suggest that mesoangioblasts constitutively express HSP70 as an 'a priori' activation mechanism, while they maintain the ability to respond to stress stimuli.