Published in

TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference

DOI: 10.1109/sensor.2009.5285721

Links

Tools

Export citation

Search in Google Scholar

An Organic Electronic Ion Pump to Regulate Intracellular Signaling at High Spatiotemporal Resolution

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Current technologies for cell stimulation suffer from a variety of drawbacks. Indeed, precise, localized, and minimally disruptive machine-to-cell interfacing is difficult to achieve. Here we present the organic electronic ion pump (OEIP), a polymer-based delivery system exhibiting high spatial, temporal, and dosage precision. Based on electrophoretic transport of positively charged species, the OEIP can deliver - with high precision - an array of biologically relevant substances without fluid flow, thus eliminating convective disturbance of the target system's environment. We discuss our results to date, including oscillatory delivery profiles and stimulation of neuronal cells in vitro, as well as our ongoing work.