Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, ACS Applied Materials and Interfaces, 20(5), p. 10337-10345, 2013

DOI: 10.1021/am403365j

Links

Tools

Export citation

Search in Google Scholar

Fabrication of a Novel Polymer-Free Nanostructured Drug-Eluting Coating for Cardiovascular Stents

Journal article published in 2013 by Yao Wang, Wenli Zhang, Jixi Zhang ORCID, Wei Sun, Ruiyan Zhang, Hongchen Gu
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Angioplasty with stents is the most important method for the treatment of coronary artery disease (CAD). However, the drug-eluting stents (DES) which have been widely used nowadays have the increased risks of inflammatory reactions and late stent thrombosis (LST) due to the persistence of polymer coatings. To improve the bio-safety, a novel polymer-free composite drug-eluting coating composed of magnetic mesoporous silica nanoparticles (MMSNs) and carbon nanotubes (CNTs) is constructed using the electrophoretic deposition (EPD) method in this study. A crack-free two-layered coating with impressive "network" nanotopologies is successfully obtained by regulating the composition and structures. This nanostructured coating exhibits excellent mechanical flexibility and blood compatibility in vitro, and the drug-loading and release performance is satisfactory as well. The in vivo study shows that this composite coating has obvious advantages of rapid endothelialization due to its unique 3D nanostructured topologies in comparison with the commercial polymer-coated DES. This study is aimed to provide new ideas and reliable data to design novel functional coatings which could accelerate the re-endothelialization process and avoid inflammatory reactions, thus improving the in vivo bio-safety of DES.