Published in

Elsevier, Chemosphere, 7(64), p. 1157-1166, 2006

DOI: 10.1016/j.chemosphere.2005.11.045

Links

Tools

Export citation

Search in Google Scholar

Removal of linear alkylbenzene sulfonates and their degradation intermediates at low temperatures during activated sludge treatment

Journal article published in 2006 by V. M. León, C. López, P. A. Lara-Martín ORCID, D. Prats, P. Varó, E. González-Mazo
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The degradation of linear alkylbenzene sulfonates and their degradation intermediates (sulfophenylcarboxylic acids) has been characterized at 9 degrees C in an activated sludge pilot plant. After an adequate adaptation period (20 days), LAS primary degradation exceeds 99% and takes place preferentially for long alkyl chain homologues and external isomers. LAS homologues in the reactor are preferentially sorbed onto particulate matter, while sulfophenylcarboxylic acids (SPCs) are present predominantly in solution, due to their lower hydrophobicity. During the adaptation period the most abundant LAS biodegradation intermediates were long chain sulfophenylcarboxylic acids (SPCs) (C(9)-C(13)SPC). However once this system is fully adapted, the microorganisms are capable of degrading SPCs efficiently. SPCs with 7-9 carbon atoms in the carboxylic chain predominate due to their degradation being slower than for the rest of the SPCs. The presence of C(13)SPC confirms that LAS degradation in wastewater starts with a omega-oxidation on the alkylic chain. A preferential degradation of SPC isomers of the types 2phiC(n)SPC to 6phiC(n)SPC was also detected, as shown by the relatively higher SPC concentrations of the remaining ones.