Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Journal of Applied Physics, 7(114), p. 074503

DOI: 10.1063/1.4817884

Links

Tools

Export citation

Search in Google Scholar

Numerical study of sub-millimeter Gunn oscillations in InP and GaN vertical diodes: Dependence on bias, doping, and length

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

In this work, we report on Monte Carlo simulations of InP and GaN vertical Gunn diodes to optimize their oscillation frequency and DC to AC conversion efficiency. We show that equivalent operating conditions are achieved by the direct application of a sinusoidal AC voltage superimposed to the DC bias and by the simulation of the intrinsic device coupled with the consistent solution of a parallel RLC resonant circuit connected in series. InP diodes with active region about 1 μm offer a conversion efficiency up to 5.5% for frequencies around 225 GHz. By virtue of the larger saturation velocity, for a given diode length, oscillation frequencies in GaN diodes are higher than for InP structures. Current oscillations at frequencies as high as 675 GHz, with 0.1% efficiency, are predicted at the sixth generation band in a 0.9 μm-long GaN diode, corroborating the suitability of GaN to operate near the THz band. At the first generation band, structures with notch, in general, provide lower oscillation frequencies and efficiencies in comparison with the same structures without notch. However, a higher number of generation bands are originated in notched diodes, thus, typically reaching larger frequencies. Self-heating effects reduce the performance, but in GaN diodes the efficiency is not significantly degraded.