Published in

Elsevier, Earth and Planetary Science Letters, (371-372), p. 258-268, 2013

DOI: 10.1016/j.epsl.2013.03.036

Links

Tools

Export citation

Search in Google Scholar

The "MIS 11 paradox" and ocean circulation: Role of millennial scale events

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Highlights • North Atlantic records indicate an intense Heinrich stadial (HS) during Termination V. • The HS probably resulted from extreme glacial conditions during MIS12. • The HS curtailed AMOC, shaping TV via meridional heat transport anomalies. • The rate of CO2 release during the HS of TV was lower than during HS1. • North Atlantic overturning during MIS11 was enhanced with respect to the Holocene. Abstract The role of millennial scale climate variability in supplementing the astronomical forcing of glacial–interglacial transitions remains a major unresolved question. Here we compare the occurrence and character of “terminal” ice rafting events in both the North and South Atlantic during the last deglaciation (Termination I, TI) and during the transition between Marine Isotope Stages (MIS) 12 and 11 (or Termination V, TV). We show that TV experienced a massive terminal ice rafting event in the North Atlantic that was more intense and longer lasting than Heinrich event 1 (H1) of the last deglaciation. This massive ice rafting event was linked to cold stadial conditions and reduced deep water formation in the North Atlantic, in parallel with warming at high southern latitudes, similar to the bipolar seesaw pattern exhibited during H1 over the last deglaciation. We propose that the particular intensity and duration of the TV ice rafting event resulted from the especially large volume of Northern Hemisphere ice sheets during MIS12. In turn, the unusually long duration and large amplitude of TV likely resulted from the exceptionally prolonged collapse of the AMOC during the TV Heinrich stadial, and from a subsequent transient AMOC “overshoot” with respect to later MIS11 interglacial circulation. Furthermore, we suggest that the intense Heinrich stadial of TV contributed to the deglaciation primarily via meridional heat transport anomalies that would have enhanced the incipient warming arising from relatively weak insolation forcing, and only secondarily via CO2 release.