Published in

Acta Physica Sinica, 1(64), p. 010501, 2015

DOI: 10.7498/aps.64.010501

Links

Tools

Export citation

Search in Google Scholar

Dynamical modeling and multi-periodic behavior analysis on pulse train controlled DCM-DCM BIFRED converter

Journal article published in 2015 by Shi Guo-Dong, Dong Wei, Zhang Hai-Ming, Bao Bo-Cheng, Feng Fei, Dong Wei
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

According to four different operating modes of a BIFRED converter, a piecewise smooth linear time-varying model for pulse train (PT)-controlled BIFRED converter operating in dual discontinuous conduction modes (DCM-DCM) is established, from which time-domain waveforms and phase portraits under different loads are obtained by numerical simulations. By analyzing the variation of the charge of an output capacitor in a switching period, a one-dimensional approximate discrete mapping model for PT-controlled DCM-DCM BIFRED converter is derived, in which the multi-periodic behaviors with the variations of the load resistance and the input voltage are studied, and the stability analysis and the estimations of the load resistance ranges are performed. Research findings indicate that the dynamical behaviors depicted by the one-dimensional approximate discrete mapping model are in good agreement with those described by the piecewise smooth linear time-varying model, well revealing the complicated multi-periodic behaviors existing in the PT-controlled DCM-DCM BIFRED converter. By PSIM circuit simulations and physical circuit experimental measurements, the waveforms obtained are consistent with the results of theoretical analysis, effectively validating the feasibility of the two dynamical models.