Published in

Nature Research, Nature Cell Biology, 2(10), p. 194-201, 2008

DOI: 10.1038/ncb1680

Links

Tools

Export citation

Search in Google Scholar

Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFκB and cooperating with Stat3

Journal article published in 2008 by Josema Torres, Fiona M. Watt ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of blastocysts. Self-renewal of mouse ES cells depends on activation of Stat3 by leukaemia inhibitory factor (LIF) in collaboration with bone morphogenetic protein signalling. The transcription factor Nanog is essential in maintaining pluripotency but the mechanisms involved are poorly understood. Here we examine the functional interactions of Nanog with the Stat3 and NFkappaB pathways. Nanog and Stat3 were found to bind to and synergistically activate Stat3-dependent promoters. We also found that Nanog binds to NFkappaB proteins; however, Nanog binding inhibited transcriptional activity of NFkappaB proteins. Endogenous NFkappaB activity and target-gene expression increased during differentiation of ES cells. Overexpression of NFkappaB proteins promoted differentiation, whereas inhibition of NFkappaB signalling, either by genetic ablation of the Ikbkg gene or overexpression of the IkappaBalpha super-repressor, increased expression of pluripotency markers. We conclude that Nanog represses the pro-differentiation activities of NFkappaB and cooperates with Stat3 to maintain pluripotency.