Published in

MDPI, Materials, 11(8), p. 7988-7996, 2015

DOI: 10.3390/ma8115437

Links

Tools

Export citation

Search in Google Scholar

TiO2 Nanosols Applied Directly on Textiles Using Different Purification Treatments

Journal article published in 2015 by Simona Ortelli ORCID, Anna Costa ORCID, Michele Dondi
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Self-cleaning applications using TiO2 coatings on various supporting media have been attracting increasing interest in recent years. This work discusses the issue of self-cleaning textile production on an industrial scale. A method for producing self-cleaning textiles starting from a commercial colloidal nanosuspension (nanosol) of TiO2 is described. Three different treatments were developed for purifying and neutralizing the commercial nanosol: washing by ultrafiltration; purifying with an anion exchange resin; and neutralizing in an aqueous solution of ammonium bicarbonate. The different purified TiO2 nanosols were characterized in terms of particle size distribution (using dynamic light scattering), electrical conductivity, and ζ potential (using electrophoretic light scattering). The TiO2-coated textiles' functional properties were judged on their photodegradation of rhodamine B (RhB), used as a stain model. The photocatalytic performance of the differently treated TiO2-coated textiles was compared, revealing the advantages of purification with an anion exchange resin. The study demonstrated the feasibility of applying commercial TiO2 nanosol directly on textile surfaces, overcoming problems of existing methods that limit the industrial scalability of the process.