Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Journal of Mass Spectrometry, 4(47), p. 466-475, 2012

DOI: 10.1002/jms.2980

Links

Tools

Export citation

Search in Google Scholar

Identification and characterization of new Fusarium masked mycotoxins, T2 and HT2 glycosyl derivatives, in naturally contaminated wheat and oats by liquid chromatography-high-resolution mass spectrometry

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The presence of glucoside derivatives of T-2 and HT-2 toxins (type A trichothecene mycotoxins) in naturally contaminated wheat and oats is reported for the first time. The use of advanced high-resolution mass spectrometry based on Orbitrap technology allowed to obtain molecular structure details by measuring exact masses of main characteristic fragments, with mass accuracy lower than 2.8 ppm (absolute value). A monoglucoside derivative of T-2 toxin and two monoglucoside derivatives of HT-2 toxin were identified and characterized. The analysis of their fragmentation patterns provided evidence for glucosylation at C-3 position for T-2 toxin and at C-3 or C-4 position for HT-2 toxin. A screening for the presence of these new masked forms of mycotoxins was carried out on a set of naturally contaminated wheat and oats samples. On the basis of peak area ratio between glucoside derivatives and free T-2 and HT-2 toxins, the presence of glucoside derivatives was more likely in wheat than in oats samples. The present work confirms the widespread occurrence of trichothecene glucosides in cereal grains naturally contaminated with the relevant unconjugated toxins, thus suggesting the importance of developing suitable analytical methods for their detection. Besides toxicity studies, tracking down these new masked forms of trichothecenes along the food/feed chain would enable to collect information on their relevance in human/animal exposure to mycotoxin risk.