Published in

Taylor and Francis Group, Ferroelectrics, 1(440), p. 3-24

DOI: 10.1080/00150193.2012.741923

Links

Tools

Export citation

Search in Google Scholar

BioFerroelectricity: Diphenylalanine Peptide Nanotubes Computational Modeling and Ferroelectric Properties at the Nanoscale

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ferroelectricity and piezoelectricity are two of the common ferroelectric material properties, which have widespread observations in many biological systems, and these are referred to as biopiezoelectricity and bioferroelectricity. This paper presents a short overview of the main issues of piezoelectricity and ferroelectricity, their manifestation in organic, biological, and molecular systems. As a showcase of novel biopiezomaterials, the investigation of diphenylalanine (FF) peptide nanotubes (PNTs) is described by computational molecular modeling, as well by experimental AFM/PFM measurements. FF PNTs present a unique class of self-assembled functional biomaterials, owing to their wide range of useful properties, including nanostructural piezoelectric and ferroelectric properties.