Published in

Nature Research, Nature Methods, 5(10), p. 427-431, 2013

DOI: 10.1038/nmeth.2436

Links

Tools

Export citation

Search in Google Scholar

Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Genetic interactions influence many phenotypes and can be used as a powerful experimental tool to discover functional relationships between genes. Here we describe a robust and scalable method to systematically map genetic interactions in human cancer cells using combinatorial RNAi and high-throughput imaging. Through automated, single-cell phenotyping, we measured genetic interactions across a broad spectrum of phenotypes, including cell count, cell eccentricity and nuclear area. We mapped genetic interactions of epigenetic regulators in colon cancer cells, recovering known protein complexes. Our study also revealed the prospects and challenges of studying genetic interactions in human cells using multiparametric phenotyping.