Published in

Springer Nature [academic journals on nature.com], Cell Death & Differentiation, 10(17), p. 1613-1623, 2010

DOI: 10.1038/cdd.2010.39

Links

Tools

Export citation

Search in Google Scholar

Smac/DIABLO release from mitochondria and XIAP inhibition are essential to limit clonogenicity of Type I tumor cells after TRAIL receptor stimulation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Death receptors, such as Fas/CD95 and TRAIL receptors, engage the extrinsic pathway for caspase activation, but also couple to the intrinsic mitochondrial route. In so-called Type II cells, death receptors require the mitochondrial pathway for apoptotic execution, whereas in Type I cells they reportedly do not. For established tumor cell lines, the Type I/Type II distinction is based on short-term apoptosis assays. We report here that the mitochondrial pathway is essential for apoptotic execution of Type I tumor cells by death receptors, when long-term clonogenicity is taken into account. A blockade of the mitochondrial pathway in Type I tumor cells - by RNA interference for Bid or Bcl-2 overexpression - reduced effector caspase activity and mediated significant clonogenic resistance to TRAIL. Downstream from the mitochondria, Caspase-9 did not contribute to clonogenic death of TRAIL-treated Type I cells. Rather, the release of Smac/DIABLO and the inhibition of XIAP activity proved to be crucial for full effector caspase activity and clonogenic execution. Thus, in Type I cells the intrinsic pathway downstream from death receptors is not redundant, but limits clonogenicity by virtue of Smac/DIABLO release and XIAP inhibition. This finding is relevant for cancer therapy using death receptor agonists.