Published in

Elsevier, Atmospheric Environment, 36(43), p. 5713-5722

DOI: 10.1016/j.atmosenv.2009.08.005

Links

Tools

Export citation

Search in Google Scholar

Long-range potential source contributions of episodic aerosol events to PM10 profile of a megacity

Journal article published in 2009 by Ferhat Karaca ORCID, Ismail Anil, Omar Alagha
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper evaluates possible long-range source contributions to the PM10 profile of Istanbul, Turkey. A novel method for classifying PM10 episodic events resulting from long-range transport, as opposed to local ones, was implemented. Hourly PM10 mass concentrations from ten stations distributed throughout Istanbul during the year 2008 were used for this purpose. Hourly backward trajectories for the arrival of air masses to the center of Istanbul for the year 2008 were calculated using the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. Significant episodes from these backward trajectories were selected and employed in Potential Source Contribution Function (PSCF) analysis to estimate the possible contribution of long-range PM10 transport (LRPMT) to observed PM10 concentrations. The PSCF results showed significant seasonal variations. Based on the results obtained, PM10 concentrations observed in Istanbul during summer and autumn are not heavily affected by LRPMT. Mediterranean countries, especially those of the central part of northern Africa (northern Algeria and Libya) are the most significant potential PM10 contributors to Istanbul's atmosphere during springtime. During winter, Balkan countries, including the Aegean part of Turkey, Greece, Bulgaria, Serbia, and Croatia, as well as northern Italy, eastern France, southern Germany, Austria and the eastern part of Russia, were the most important LRPMT source regions for high PSCF values.