Published in

Elsevier, Materials Science and Engineering: B, 1-3(174), p. 123-126

DOI: 10.1016/j.mseb.2010.03.030

Links

Tools

Export citation

Search in Google Scholar

Topographic analysis of silicon nanoparticles-based electroluminescent devices

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Electroluminescent properties of silicon nanoparticles embedded in MOS devices have been studied. Silicon rich oxide (SRO) films with 4 at.% of silicon excess were used as active layers. Intense and stable light emission is observed with the naked eye as shining spots at the surface of devices. AFM measurements on these devices exhibit a remarkably granular surface where the EL spots are observed. The EL measurements show a broad visible spectrum with various peaks between 420 and 870 nm. These EL spots are related with charge injection through conductive paths created by adjacent Si-nps within the SRO.