Published in

Public Library of Science, PLoS ONE, 9(7), p. e46227, 2012

DOI: 10.1371/journal.pone.0046227

Links

Tools

Export citation

Search in Google Scholar

Effects of Hypoxic Exposure during Feeding on SDA and Postprandial Cardiovascular Physiology in the Atlantic Cod, Gadus morhua

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Some Atlantic cod in the Bornholm Basin undertake vertical foraging migrations into severely hypoxic bottom water. Hypoxic conditions can reduce the postprandial increase in gastrointestinal blood flow (GBF). This could subsequently postpone or reduce the postprandial increase in oxygen consumption (MO(2)), i.e. the SDA, leading to a disturbed digestion. Additionally, a restricted oxygen uptake could result in an oxygen debt that needs to be compensated for upon return to normoxic waters and this may also affect the ability to process the food. Long-term cardio-respiratory measurements were made on fed G. morhua in order to understand how the cardio-respiratory system of feeding fish respond to a period of hypoxia and a subsequent return to normoxia. These were exposed to 35% water oxygen saturation for 90 minutes, equivalent to the time and oxygen level cod voluntarily endure when searching for food in the Bornholm Basin. We found that i) gastric and intestinal blood flows, cardiac output and MO(2) increased after feeding, ii) gastric and intestinal blood flows were spared in hypoxia, and iii) there were no indications of an oxygen debt at the end of the hypoxic period. The magnitude and time course of the measured variables are similar to values obtained from fish not exposed to the hypoxic period. In conclusion, when cod in the field search for and ingest prey under moderate hypoxic conditions they appear to stay within safe limits of oxygen availability as we saw no indications of an oxygen debt, or negative influence on digestive capacity, when simulating field observations.