Published in

Elsevier, International Journal of Hydrogen Energy, 18(35), p. 9818-9827

DOI: 10.1016/j.ijhydene.2010.05.106

Links

Tools

Export citation

Search in Google Scholar

An experimental and theoretical approach for the biogas steam reforming reaction

Journal article published in 2010 by D. G. Avraam ORCID, T. I. Halkides, D. K. Liguras, O. A. Bereketidou, M. A. Goula
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An experimental and theoretical study for the biogas steam reforming reaction over 5%Ru/Al2O3 catalyst have been performed. An apparatus was constructed for the conduction of the experiments, the core of which was a tube reactor, filled with the catalyst in form of pellets. The inlet gas mixture consisted of CH4 and CO2 in various composition ratios as a model biogas and steam. A theoretical model of the process was developed. The experimental reactor was modelled as an isothermal pseudo homogeneous fixed bed reactor. Internal and external transport phenomena were neglected and appropriate effectiveness factors were employed instead. A physical properties model was used for the calculation of the physicochemical properties of the real mixture. Five reactant species, CH4, CO2, H2O, CO and H2, were included in the model, whereas the feed consisted of the first three. Steam reforming and water gas shift were the main reactions. Experimental results and theoretical predictions match closely, stability of the catalyst was assured and an optimal operational window was identified, at GHSV = 10,000–20,000 h−1, T = 700–800 °C, CH4/CO2 = 1.0–1.5 and H2O/CH4 = 3.0–5.0.