Published in

American Astronomical Society, Astrophysical Journal, 1(664), p. L35-L38, 2007

DOI: 10.1086/520637

Links

Tools

Export citation

Search in Google Scholar

Precise Timing of the X-ray Pulsar 1E 1207.4-5209: A Steady Neutron Star Weakly Magnetized at Birth

Journal article published in 2007 by E. V. Gotthelf ORCID, J. P. Halpern
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We analyze all X-ray timing data on 1E 1207.4-5209 in supernova remnant PKS 1209-51/52 gathered in 2000-2005, and find a highly stable rotation with P=424.130451(4) ms and period derivative of (9.6 +/- 9.4)E-17 s/s. This refutes previous claims of large timing irregularities in these data. In the dipole spin-down formalism, the 2-sigma upper limit on period derivative implies an energy loss rate < 1.5E32 ergs/s, surface magnetic field strength B_p < 3.5E11 G, and characteristic age tau > 24 Myr. This tau exceeds the remnant age by 3 orders of magnitude, requiring that the pulsar was born spinning at its present period. The X-ray luminosity of 1E 1207.4-5209, L(bol) ~= 2E33 ergs/s at 2 kpc, exceeds its spin-down energy loss, implying that L(bol) derives from residual cooling, and perhaps partly from accretion of supernova debris. The upper limit on B_p is small enough to favor the electron cyclotron model for at least one of the prominent absorption lines in its soft X-ray spectrum. This is the second demonstrable case of a pulsar born spinning slowly and with a weak B-field, after PSR J1852+0040 in Kesteven 79. Comment: 5 pages, 2 figure, Latex, emulateapj style. Submitted to ApJ Letters