Published in

IOP Publishing, Modelling and Simulation in Materials Science and Engineering, 3(19), p. 035002

DOI: 10.1088/0965-0393/19/3/035002

Links

Tools

Export citation

Search in Google Scholar

A phase-field model of stress effect on grain boundary migration

Journal article published in 2011 by Saswata Bhattacharyya, Tae Wook Heo ORCID, Kunok Chang, Long-Qing Chen
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We developed a phase-field model to study the stress-driven grain boundary migration in elastically inhomogeneous polycrystalline materials with arbitrary elastic inhomogeneity and anisotropy. The dependence of elastic stiffness tensor on grain orientation is taken into account, and the elastic equilibrium equation is solved using the Fourier spectral iterative-perturbation method. We studied the migration of planar and curved grain boundaries under an applied stress. The relation between grain boundary migration velocity and driving force is found to be linear in the steady-state regime. Our study shows that the stress distribution depends on the relative misorientation between the grains and the nature of the applied load. As a consequence, the mechanism of grain boundary migration is different when the load is applied parallel or perpendicular to a grain boundary. The bulk mechanical driving force for grain boundary migration is provided by the difference in the level of stress in the adjoining grains which arise due to difference in elastic moduli. We further show that under certain conditions an applied stress may act as a precursor to abnormal grain growth.