Taylor and Francis Group, Arid Land Research and Management, 4(28), p. 383-394
DOI: 10.1080/15324982.2013.871599
Full text: Download
Aggregate stability is a useful soil physical dynamic index of soil resistivity to surface wind and water erosion in all ecosystems, especially, in arid and semi-arid regions. Two machine learning techniques including support vector machines (SVMs) and artificial neural networks (ANNs) were used to develop predictive models for the estimation of geometric mean diameter (GMD) of soil aggregates. An empirical multiple linear regression (MLR) model was also constructed as the benchmark to compare their performances. Furthermore, the influence of feature space dimension reduction using parallel genetic algorithm (PGA) on the prediction accuracy of all investigated techniques was evaluated. The ANN model achieved greater accuracy in GMD prediction as compared to the MLR and SVM models. The obtained ERROR% value in GMD prediction using the ANN model was 6.9%, while it was 15.7 and 10.6% for the MLR and SVM models, respectively. Feature selection using PGA improved the prediction accuracy of all investigated techniques. The coefficient of determination (R2) values between the measured and the predicted GMD values using PGA-based MLR, SVM, and ANN models increased by 20.0, 12.2, and 8.8% in comparison with the proposed MLR, SVM, and ANN models. In conclusion, it appears that the PGA-based ANN model could be considered as an alternative to conventional regression models for the GMD prediction.