Published in

Elsevier, Journal of Biological Chemistry, 44(290), p. 26361-26372, 2015

DOI: 10.1074/jbc.m115.682203

Links

Tools

Export citation

Search in Google Scholar

Structure of a CGI-58 Motif Provides the Molecular Basis of Lipid Droplet Anchoring

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Triacylglycerols (TGs) stored in lipid droplets (LDs) are hydrolyzed in a highly regulated metabolic process called lipolysis to free fatty acids that serve as energy substrates for beta-oxidation, precursors for membrane lipids and signaling molecules. Comparative gene identification-58 (CGI-58) stimulates the enzymatic activity of adipose triglyceride lipase (ATGL), which catalyzes the hydrolysis of TGs to diacylglycerols and free fatty acids. In adipose tissue, protein-protein interactions between CGI-58 and the LD coating protein perilipin 1 restrain CGI-58`s ability to activate ATGL under basal conditions. Phosphorylation of perilipin 1 disrupts these interactions and mobilizes CGI-58 for the activation of ATGL. We have previously demonstrated that the removal of a peptide at the N-terminus (residues 10-31) of CGI-58 abrogates CGI-58 localization to LDs and CGI-58-mediated activation of ATGL. Here, we show that this tryptophan-rich N-terminal peptide serves as an independent LD anchor, with its three tryptophans serving as focal points of the left (harboring Trp21 and Trp25) and right (harboring Trp29) anchor arms. The solution state NMR structure of a peptide comprising the LD anchor bound to dodecylphosphocholine micelles as LD mimic reveals that the left arm forms a concise hydrophobic core comprising tryptophans Trp21 and Trp25 and two adjacent leucines. Trp29 serves as the core of a functionally independent anchor arm. Consequently, simultaneous tryptophan alanine permutations in both arms abolish localization and activity of CGI-58 as opposed to tryptophan substitutions that occur in only one arm.