Published in

ECS Meeting Abstracts, 45(MA2016-02), p. 3316-3316, 2016

DOI: 10.1149/ma2016-02/45/3316

American Chemical Society, Organometallics, 22(34), p. 5461-5469, 2015

DOI: 10.1021/acs.organomet.5b00811

Links

Tools

Export citation

Search in Google Scholar

The Unusual Redox Properties of Fluoroferrocenes Revealed through a Comprehensive Study of the Haloferrocenes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report the synthesis and full characterization of the entire haloferrocene (FcX) and 1,1′-dihaloferrocene (fcX2) series (X = I, Br, Cl, F; Fc = ferrocenyl, fc = ferrocene-1,1′-diyl). Finalization of this simple, yet intriguing set of compounds has been delayed by synthetic challenges associated with the incorporation of fluorine substituents. Successful preparation of fluoroferrocene (FcF) and 1,1′- difluoroferrocene (fcF2) were ultimately achieved using reactions between the appropriate lithiated ferrocene species and N-fluorobenzenesulfonimide (NFSI). The crude reaction products, in addition to those resulting from analogous preparations of chloroferrocene (FcCl) and 1,1′-dichloroferrocene (fcCl2), were utilized as model systems to probe the limits of a previously reported “oxidative purification” methodology. From this investigation and careful solution voltammetry studies, we find that the fluorinated derivatives exhibit the lowest redox potentials of each of the FcX and fcX2 series. This counterintuitive result is discussed with reference to the spectroscopic, structural, and first-principles calculations of these and related materials.