Published in

Canadian Science Publishing, Canadian Journal of Fisheries and Aquatic Sciences, 12(72), p. 1860-1875, 2015

DOI: 10.1139/cjfas-2015-0169

Links

Tools

Export citation

Search in Google Scholar

Weakening portfolio effect strength in a hatchery-supplemented Chinook salmon population complex

Journal article published in 2015 by William H. Satterthwaite, Stephanie M. Carlson ORCID, Ian Bradbury
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Biocomplexity contributes to asynchronous population dynamics, buffering stock complexes in temporally variable environments, a phenomenon referred to as a “portfolio effect”. We previously revealed a weakened but persistent portfolio effect in California’s Central Valley fall-run Chinook salmon (Oncorhynchus tshawytscha), despite considerable degradation and loss of habitat. Here, we further explore the timing of changes in variability and synchrony and relate these changes to factors hypothesized to influence variability in adult abundance, including hatchery release practices and environmental variables. We found evidence for increasing synchrony among fall-run populations that coincided temporally with increased off-site hatchery releases into the estuary but not with increased North Pacific environmental variability (measured by North Pacific Gyre Oscillation), nor were common trends well explained by a suite of environmental covariates. Moreover, we did not observe a simultaneous increase in synchrony in the nearby Klamath–Trinity system, where nearly all hatchery releases are on-site. Wavelet analysis revealed that variability in production was higher and at a longer time period later in the time series, consistent with increased environmental forcing and a shift away from dynamics driven by natural spawners. © 2015, National Research Council of Canada. All rights reserved.