Published in

Elsevier, Journal of Chromatography A, 1-2(877), p. 123-132

DOI: 10.1016/s0021-9673(00)00196-5

Links

Tools

Export citation

Search in Google Scholar

Determination of trace cadmium in environmental water samples using ion-interaction reversed-phase liquid chromatography with fluorescence detection

Journal article published in 2000 by Brett Paull ORCID, Eadaoin Twohill, Wasim Bashir
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An ion-interaction reversed-phase liquid chromatographic method has been developed for the determination of cadmium at low microg/l concentrations in environmental water samples. Cadmium and other matrix metals were separated through on-column complexation with 8-hydroxyquinoline sulphonate, using an octadecylsilica column and a mobile phase containing 15% acetonitrile, 10-13 mM tetrabutylammonium hydroxide, 5 mM 8-hydroxyquinoline 5-sulphonic acid and 10 mM acetic acid-acetate buffer (pH 4.8-5.4). Under the above conditions Cd(II) could be easily resolved from excess concentrations of matrix metals and could be detected at concentrations as low as 2 microg/l using fluorescence detection at 500 nm (based upon a 100-microl injection). The method showed a slightly curved detector response over the range of interest [up to 1 mg/l Cd(II)] and was successfully applied to the determination of trace Cd(II) in water samples containing large excesses of Mg(II) and Zn(II) and other matrix metals.