Published in

American Physiological Society, Physiological Genomics, 2(13), p. 119-127

DOI: 10.1152/physiolgenomics.00172.2002

Links

Tools

Export citation

Search in Google Scholar

Age-related impairment of the transcriptional responses to oxidative stress in the mouse heart

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To investigate the transcriptional response to oxidative stress in the heart and how it changes with age, we examined the cardiac gene expression profiles of young (5-mo-old), middle-aged (15-mo-old), and old (25-mo-old) C57BL/6 mice treated with a single intraperitoneal injection of paraquat (50 mg/kg). Mice were killed at 0, 1, 3, 5, and 7 h after paraquat treatment, and the gene expression profile was obtained with high-density oligonucleotide microarrays. Of 9,977 genes represented on the microarray, 249 transcripts in the young mice, 298 transcripts in the middle-aged mice, and 256 transcripts in the old mice displayed a significant change in mRNA levels (ANOVA, P < 0.01). Among these, a total of 55 transcripts were determined to be paraquat responsive for all age groups. Genes commonly induced in all age groups include those associated with stress, inflammatory, immune, and growth factor responses. Interestingly, only young mice displayed a significant increase in expression of all three isoforms of GADD45, a DNA damage-responsive gene. Additionally, the number of immediate early response genes (IEGs) found to be induced by paraquat was considerably higher in the younger animals. These results demonstrate that, at the transcriptional level, there is an age-related impairment of specific inducible pathways in the response to oxidative stress in the mouse heart.