Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Physical Chemistry C, 27(114), p. 11776-11782, 2010

DOI: 10.1021/jp104605b

Links

Tools

Export citation

Search in Google Scholar

Synthesis of Nickel Nanoparticles Supported on Nanoporous Silicon Oxycarbide (SiCO) Sheath−Core Fibers

Journal article published in 2010 by Ping Lu, Qing Huang ORCID, Amiya Mukherjee, You-Lo Hsieh
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nickel (Ni) nanoparticles with average diameters less than 5 nm were successfully synthesized on nanoporous silicon oxycarbide (SiCO) sheath−core fibers by incipient wetness impregnation of Ni acetylacetonate precursor followed by reduction at temperatures above 250 °C. The SiCO fibers were fabricated by pyrolyzing electrospun 5/15 PUS/PMMA composite fibers at temperatures from 250 to 1000 °C to contain nanoporous cores and striated sheaths. The SiCO fibers pyrolyzed up to 600 °C were superhydrophobic and became superhydrophilic when pyrolyzed at 800 °C and above. Such a drastic switch from superhydrophobicity to superhydrophilicity coincided with the disappearance of aliphatic methyl and methylene groups. The SiCO ceramic fibers pyrolyzed at 1000 °C were highly porous with BET surface area 95.7 m2/g, pore volume 0.352 cm3/g, and average pore size 26 nm. They were thermally and chemically stable enough to support the Ni acetylacetonate precursor to be reduced to Ni nanoparticles at 250, 500, and 900 °C. SEM observation and EDS elemental mappings showed the reduced Ni nanoparticles to be homogeneously distributed in the fibrous structures without any aggregation. The Ni nanoparticles were monodispersed as confirmed by TEM and in a face-centered-cubic crystalline structure as evidenced by SAED and XRD.