Published in

American Physical Society, Physical review B, 12(69), 2004

DOI: 10.1103/physrevb.69.125401

Links

Tools

Export citation

Search in Google Scholar

Chains of gold atoms with tailored electronic states

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A combination of angle-resolved photoemission and scanning tunneling microscopy is used to explore the possibilities for tailoring the electronic structure of gold atom chains on silicon surfaces. It is shown that the interchain coupling and the band filling can be adjusted systematically by varying the step spacing via the tilt angle from Si(111). Planes with odd Miller indices are stabilized by chains of gold atoms. Metallic bands and Fermi surfaces are observed. These findings suggest that atomic chains at stepped semiconductor substrates make a highly flexible class of solids approaching the one-dimensional limit.