Published in

American Chemical Society, Biomacromolecules, 10(10), p. 2885-2894, 2009

DOI: 10.1021/bm900706r

Links

Tools

Export citation

Search in Google Scholar

Biofunctionalized Protein Resistant Oligo(ethylene glycol)-Derived Polymer Brushes as Selective Immobilization and Sensing Platforms

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Poly(oligo(ethylene glycol) methacrylate) (POEGMA) brushes are extremely protein resistant polymer coatings that can reduce nonspecific adsorption of proteins from complex mixtures such as blood, sera and plasma. These coatings can be prepared via atom transfer radical polymerization with excellent control of their thickness and grafting density. We studied their direct functionalization with streptavidin and developed an assay for determining which coupling conditions afford the highest streptavidin loading efficiency. Disuccinimidyl carbonate was found to be the most efficient activating agent for covalent capture of the receptor. Using infrared and X-ray photoelectron spectroscopy, fluorescence microscopy, surface plasmon resonance, and ellipsometry, we examined how structural parameters such as the length of the oligo(ethylene glycol) side chain affect streptavidin functionalization, but also immobilization of biotinylated antibodies, subsequent selective secondary recognition and nonspecific binding of proteins. We found evidence that large macromolecules cannot infiltrate dense polymer brushes and that bulky antibody recognition occurs in the upper part of these coatings.