Published in

American Chemical Society, Organometallics, 8(34), p. 1449-1453, 2015

DOI: 10.1021/om501154d

Links

Tools

Export citation

Search in Google Scholar

Coordination of a Triphosphine–Silane to Gold: Formation of a Trigonal Pyramidal Complex Featuring Au + →Si Interaction

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Coordination of the triphosphine-fluorosilane [o-(iPr2P)C6H4]3SiF to AuCl results in the formation of a trigonal pyramidal cationic complex. Though cationic, the gold center acts as a Lewis base and is engaged in significant Au→Si interaction, as substantiated by X-ray diffraction and NMR spectroscopy. In solution, the P,P,P,Si tetracoordinate cationic complex coexists with a neutral P,P,Cl tricoordinate form, with a pendant phosphine buttress and without Au→Si interaction. The bonding situation in the two isomeric forms has been assessed by DFT calculations. Coordination of the third phosphine arm is shown to induce cationization and to play a key role in the presence of the Au→Si interaction.