Published in

Wiley, Oikos, 1(125), p. 86-97, 2015

DOI: 10.1111/oik.02367

Links

Tools

Export citation

Search in Google Scholar

Species diversity and identity effects on the water consumption of tree sapling assemblages under ample and limited water supply

Journal article published in 2015 by Torben Lübbe, Bernhard Schuldt ORCID, Heinz Coners, Christoph Leuschner
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Studies examining the influence of biodiversity on ecosystem functioning have rarely considered water turnover, the quantitatively most important biogeochemical flux in ecosystems and a process with high sensitivity to climate warming. With a tree sapling experiment consisting of three diversity levels (1, 3, 5 species), 11 different species combinations and two soil moisture levels (moist and dry), we examined the influence of tree species diversity and species identity on stand transpiration (T) under ample and restricted water supply. We further asked whether growth in mixture leads to adaptive responses in the hydraulic system and water loss regulation in plants with heterospecific neighbors compared to plants in monoculture. In moist soil, T was on average ~11% higher in the mixtures than in the monocultures (significant net diversity effect), which can mostly be attributed to a selection effect. Overyielding in T was highest in mixtures when Tilia cordata and/or Fraxinus excelsior were present. Both species developed larger leaf areas (LA) and sapwood areas (SA) in monocultures than the other species and furthermore increased LA and SA from the monocultures to the mixtures. Thus, inherent species differences in LA and hydraulics, but also neighbor effects on these traits determined T to a large extend. In dry soil, the diversity effect on T was not larger but slightly smaller, which is not in agreement with other published studies. We conclude that differences between pure and mixed sapling assemblages in stand water consumption and drought response are mainly caused by species identity effects, while species diversity seems to be less influential.This article is protected by copyright. All rights reserved.