Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Journal of Pineal Research, 3(40), p. 251-258, 2006

DOI: 10.1111/j.1600-079x.2005.00308.x

Links

Tools

Export citation

Search in Google Scholar

Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson's disease

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this study, the effects of melatonin on MPP+ -treated cerebellar granule neurons (CGNs) in culture were investigated. Results showed that MPP+ treatment significantly decreased cell viability and increased the apoptotic cell population at 24 and 48 hr. Calpain and caspase-3 activation was also determined, with results showing a strong increase in calpain (74%) and caspase 3 activity (70%), as measured by alpha-spectrin cleavage and fluorometric and colorimetric analysis, respectively. There are several studies suggesting that the activation of the cdk5/p35 pathway at its cleavage to cdk5/p25 may play a role in neuronal cell death in neurodegenerative diseases. Moreover, these studies indicate that this cleavage is mediated by calpains, and that MPP+ prompted an increase in cdk5 expression, as well as the cleavage of p35-p25, in a time-dependent manner. 1 mm Melatonin not only reduced the neurotoxic effects of MPP+ on cell viability, but also prevented apoptosis mediated by this Parkinsonian toxin in CGNs. 1 mm Melatonin reduced cdk5 expression, as well as the cleavage of p35-p25. These data indicate that melatonin possesses some neuro-protective properties against MPP+ -induced apoptosis. Moreover, these data suggest that the calpain/cdk5 signaling cascade has a potential role in the MPP+ -mediated apoptotic process in CGNs.