Published in

Springer (part of Springer Nature), Journal of Mathematical Biology, 6(47), p. 569-580

DOI: 10.1007/s00285-003-0236-4

Links

Tools

Export citation

Search in Google Scholar

Remarks on branching-extinction evolutionary cycles

Journal article published in 2003 by Fabio Dercole ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We show in this paper that the evolution of cannibalistic consumer populations can be a never ending story involving alternating levels of polymorphism. More precisely, we show that a monomorphic population can evolve toward high levels of cannibalism until it reaches a so-called branching point, where the population splits into two sub-populations characterized by different, but initially very close, cannibalistic traits. Then, the two traits coevolve until the more cannibalistic sub-population undergoes evolutionary extinction. Finally, the remaining population evolves back to the branching point, thus closing an evolutionary cycle. The model on which the study is based is purely deterministic and derived through the adaptive dynamics approach. Evolutionary dynamics are investigated through numerical bifurcation analysis, applied both to the ecological (resident-mutant) model and to the evolutionary model. The general conclusion emerging from this study is that branching-extinction evolutionary cycles can be present in wide ranges of environmental and demographic parameters, so that their detection is of crucial importance when studying evolutionary dynamics.