Published in

American Chemical Society, Analytical Chemistry, 8(81), p. 3087-3093, 2009

DOI: 10.1021/ac900059s

Links

Tools

Export citation

Search in Google Scholar

Invariance of Exocytotic Events Detected by Amperometry as a Function of the Carbon Fiber Microelectrode Diameter

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Etched carbon fiber microelectrodes of different radii have been used for amperometric measurements of single exocytotic events occurring at adrenal chromaffin cells. Frequency, kinetic, and quantitative information on exocytosis provided by amperometric spikes were analyzed as a function of the surface area of the microelectrodes. Interestingly, the percentage of spikes with foot (as well as their own characteristics), a category revealing the existence of sufficient long-lasting fusion pores, was found to be constant whatever the microelectrode diameter was, whereas the probability of overlapping spikes decreased with the electrode size. This confirmed that the prespike foot could not feature accidental superimposition of separated events occurring at different places. Moreover, the features of amperometric spikes investigated here (charge, intensity and kinetics) were found constant for all microelectrode diameters. This demonstrated that the electrochemical measurement does not introduce significant bias onto the kinetics and thermodynamics of release during individual exocytotic events. All in all, this work evidences that information on exocytosis amperometrically recorded with the usual 7 microm diameter carbon fiber electrodes is biologically relevant, although the frequent overlap between spikes requires a censorship of the data during the analytical treatment.