Published in

Trans Tech Publications, Applied Mechanics and Materials, (627), p. 3-6, 2014

DOI: 10.4028/www.scientific.net/amm.627.3

Links

Tools

Export citation

Search in Google Scholar

LiFePO<sub>4 </sub>- Activated Carbon Composite Electrode as Symmetrical Electrochemical Capacitor in Mild Aqueous Electrolyte

Journal article published in 2014 by M. Y. Ho, Poi Sim Khiew, D. Isa, T. K. Tan, W. S. Chiu ORCID, C. H. Chia ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this study, a symmetric electrochemical capacitor has been fabricated by adopting the lithiated compound (LiFePO4)-activated carbon (AC) composite as the core electrode materials. The electrochemical performances of the prepared supercapacitor were studied using cyclic voltammetry (CV) in 1.0 M Na2SO3 solution. Experimental results reveal that the maximum specific capacitance of 112.41 F/g is obtained in 40 wt % LiFePO4 loading on AC electrode in comparison to that of pure AC electrode (76.24 F/g) in 1 M Na2SO3. The enhanced capacitive performance of the 40 wt % LiFeO4 –AC composite electrode is believed attributed to the contribution of synergistic effect of electric double layer capacitance (EDLC) on the surface of AC as well as pseudocapacitance via intercalation/extraction of Na+, SO32- and Li+ ions in LiFePO4 lattices. The composite electrodes can sustain a stable capacitive performance at least 1000 cycles with only ~5 % specific capacitance loss after 1000 cycles. Based on the findings above, 40 wt % LiFeO4 –AC composite electrodes which utilise low cost materials and environmental friendly electrolyte is worth being investigated in more details.