Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of the American Chemical Society, 2(131), p. 715-722, 2008

DOI: 10.1021/ja805626s

Links

Tools

Export citation

Search in Google Scholar

Light-Induced Excited Spin State Trapping: Ab Initio Study of the Physics at the Molecular Level

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper provides a qualitative analysis of the physical content of the low-energy states of a spin-transition compound presenting a light-induced excited spin state trapping (LIESST) phenomenon, namely, [Fe(dipyrazolpyridine)2](BF4)2, which has been studied using the wave function-based CASPT2 method. Both the nature of the low-energy states and the relative position of their potential energy wells as a function of the geometry are rationalized from the analysis of the different wave functions. It is shown that the light-induced spin transition occurring in such systems could follow several pathways involving different excited spin states. In an ideal octahedral geometry, the interconversion from the excited singlet state to the triplet of lower energy, which is usually seen as an intermediate state in the LIESST mechanism, is quite unlikely since there is no crossing between the potential energy curves of these two states. On the contrary, in lower-symmetry complexes, the geometrical distortion of the coordination sphere due to ligand constraints is responsible for the occurrence of a crossing between these two states in the Franck-Condon region, leading to a possible participation of this triplet state in the LIESST mechanism. In the reverse LIESST process, a crossing between the potential energy curves of another triplet state and the excited quintet state occurs in the Franck-Condon region as well.