Published in

American Institute of Physics, Journal of Applied Physics, 4(116), p. 043511, 2014

DOI: 10.1063/1.4891217

Links

Tools

Export citation

Search in Google Scholar

High Bi content GaSbBi alloys

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The epitaxial growth, structural, and optical properties of GaSb1–xBix alloys have been investigated. The Bi incorporation into GaSb is varied in the range 0 < x ≤ 9.6% by varying the growth rate (0.31–1.33 μm h−1) at two growth temperatures (250 and 275 °C). The Bi content is inversely proportional to the growth rate, but with higher Bi contents achieved at 250 than at 275 °C. A maximum Bi content of x = 9.6% is achieved with the Bi greater than 99% substitutional. Extrapolating the linear variation of lattice parameter with Bi content in the GaSbBi films enabled a zinc blende GaBi lattice parameter to be estimated of 6.272 Å. The band gap at 300 K of the GaSbBi epitaxial layers decreases linearly with increasing Bi content down to 410 ± 40 meV (3 μm) for x = 9.6%, corresponding to a reduction of ∼35 meV/%Bi. Photoluminescence indicates a band gap of 490 ± 5 meV at 15 K for x = 9.6%.