Published in

Elsevier, Chemical Physics, 1-2(193), p. 19-26

DOI: 10.1016/0301-0104(94)00410-c

Links

Tools

Export citation

Search in Google Scholar

High-spin-low-spin transitions in Fe(II) complexes by effective Hamiltonian method

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The high-spin-low-spin (HS-LS) transition in iron(II) complexes was studied by the recently developed quantum chemical effective Hamiltonian method. This method uses a trial wave function which is an antisymmetrized product of the fully correlated function of d-electrons and of the Slater determinant of the ligand MOs instead of the conventional Hartree-Fock single determinant trial wave function built of the molecular orbitals spread over an entire complex. This approach allowed us to explicitly take into account the d-electron correlations, the weak covalence of the metal-ligand bonds, and the electronic structure of the ligands. The cooperativity effects in the HS-LS transition occurring in the crystals are briefly discussed and the contribution from the Coulomb forces to the intermolecular interaction responsible for the cooperativity is estimated.