Published in

American Chemical Society, Analytical Chemistry, 13(80), p. 4976-4985, 2008

DOI: 10.1021/ac800227t

Links

Tools

Export citation

Search in Google Scholar

General Concept of High-Performance Amperometric Detector for Microfluidic (Bio)Analytical Chips

Journal article published in 2008 by Christian Amatore ORCID, Nicolas Da Mota, Catherine Sella, Laurent Thouin
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, we established theoretically that amperometric detector arrays consisting of a series of parallel band microelectrodes placed on the wall of a microchannel may offer excellent analytical detection performances when implemented onto microfluidic (bio)analytical devices after the separative stages. In combination with the concentration imprinting strategies reported in a previous work, these exceptional performances may be extended to nonelectroactive or poorly diffusing analytes. Using an array of electrodes instead of a large single band allows the whole core of the channel to be probed though keeping an excellent time resolution. Thus, analytes with close retention times may be characterized individually with a resolution which eventually outpaces that of spectroscopic detections. Such important advantages may be obtained only through a complete understanding of the complex coupling between diffusional and convective transport of molecules in microfluidic solutions near an electrochemical detector. As a consequence, the conditions underlying the theoretical data presented in this work have been selected after optimizing procedures rooted on previous theoretical analyses. They will be fully disclosed in a series of further works that will also establish the experimental performances of such amperometric detectors and validate the present concept.