Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, International Journal of Pharmaceutics, 1(453), p. 56-64

DOI: 10.1016/j.ijpharm.2013.05.040

Links

Tools

Export citation

Search in Google Scholar

Mucus as a barrier to lipophilic drugs

Journal article published in 2013 by Hakon H. Sigurdsson ORCID, Julian Kirch, Claus-Michael Lehr
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mucus is a complex hydrogel, comprising glycoproteins, lipids, salts, DNA, enzymes and cellular debris, covering many epithelial surfaces in the human body. Once secreted, mucin forms a barrier to protect the underlying tissues against the extracellular environment. Mucus can therefore adversely affect the absorption or action of drugs administered by the oral, pulmonary, vaginal, nasal or other routes. Solubility and lipophilicity are key factors determining drug absorption, as a drug has to be soluble in the body fluids at the site of absorption and must also possess enough lipophilicity to permeate the biological membrane. Evidence has accumulated over the past 40 years indicating that poorly soluble drugs will interact with mucus glycoprotein. Studies of the permeability of native or purified mucous gels are important when it comes to understanding the relative importance of hindered diffusion versus drug binding in mucous layers. This review highlights the current understanding of the drug-mucin interaction and also examines briefly the interaction of polymers and particles with the mucus matrix. While the concept of mucoadhesion was thought to provide an intensified and prolonged contact to mucosal absorption sites, mucopenetrating properties are nowadays being discussed for (nano)particulate carriers to overcome the mucus as a barrier and enhance drug delivery through mucus.