Published in

American Chemical Society, Analytical Chemistry, 24(80), p. 9483-9490, 2008

DOI: 10.1021/ac801605v

Links

Tools

Export citation

Search in Google Scholar

Theory and Experiments of Transport at Channel Microband Electrodes under Laminar Flows. 2. Electrochemical Regimes at Double Microband Assemblies under Steady State

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The development of any particular analytical or preparative applications using electrochemical techniques in microfluidic devices requires integration of microelectrodes. This involves detailed predictions for optimizing the design of devices and selecting the best hydrodynamic conditions. For this purpose, we undertook a series of works aimed at a precise investigation of mass transport near electrodes with focus on analytical measurements. Part I of this series (Anal. Chem. 2007, 79, 8502-8510) evaluated the common case of a single microband electrode embedded within a microchannel under laminar flow. The present work (Part 2) investigated the case of a pair of microband electrodes operating either in generator-generator or generator-collector modes. The influence of the confining effect and flow velocity on the amperometric responses was examined on the basis of numerical simulations under steady-state regime. Several situations were identified, each of them corresponding to specific interactions taking place between the electrodes. Related conditions were extracted to establish a zone diagram describing all the situations. These predictions were systematically validated by experimental measurements. The results show that amperometric detections within microchannels can be performed at dual electrodes with higher analytical performances than at single ones.