Published in

Wiley, Chemical Biology & Drug Design, 6(79), p. 1025-1032, 2012

DOI: 10.1111/j.1747-0285.2012.01357.x

Links

Tools

Export citation

Search in Google Scholar

The Evolution of HLA-B*3501 Binding Affinity to Variable Immunodominant NP418-426 Peptides from 1918 to 2009 Pandemic Influenza A Virus: A Molecular Dynamics Simulation and Free Energy Calculation Study

Journal article published in 2012 by Jingjing Guo ORCID, Xiaoting Wang, Huijun Sun, Huanxiang Liu, Yulin Shen, Xiaojun Yao
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Virus-specific cytotoxic T lymphocytes contribute to the control of virus infections including those caused by influenza viruses. However, during the evolution of influenza A viruses, variations in cytotoxic T lymphocytes epitopes have been observed and it will affect the recognition by virus-specific cytotoxic T lymphocytes and the human virus-specific cytotoxic T lymphocytes response in vitro. Here, to gain further insights into the molecular mechanism of the virus-specific cytotoxic T lymphocytes immunity, the class I major histocompatibility complex-encoded HLA-B*3501 protein with six different NP(418-426) antigenic peptides emerging from 1918 to 2009 pandemic influenza A virus were studied by molecular dynamics simulation. Dynamical and structural properties (such as atomic fluctuations, solvent-accessible surface areas, binding free energy), based on the solvated protein-peptide complexes, were compared. Free energy calculations emphasized the important role of the secondary anchors (positions 2 and 9) in influencing the binding of MHC-I with antigenic non-apeptides. Furthermore, major interactions with peptides were gained from HLA-B*3501 residues: Tyr7, Ile66, Lys146, Trp147, and Tyr159. Detailed analysis could help to understand how different NP(418-426) mutants effectively bind with the HLA-B*3501.