Full text: Download
Silver is extensively used in homogeneous catalysis for organic synthesis owing to its Lewis acidity, and as a powerful one-electron oxidant. However, two-electron redox catalytic cycles, which are most common in noble metal organometallic reactivity, have never been considered. Here we show that a Ag(I)/Ag(III) catalytic cycle is operative in model C-O and C-C cross-coupling reactions. An aryl-Ag(III) species is unequivocally identified as an intermediate in the catalytic cycle and we provide direct evidence of aryl halide oxidative addition and C-N, C-O, C-S, C-C and C-halide bond-forming reductive elimination steps at monometallic silver centres. We anticipate our study as the starting point for expanding Ag(I)/Ag(III) redox chemistry into new methodologies for organic synthesis, resembling well-known copper or palladium cross-coupling catalysis. Furthermore, findings described herein provide unique fundamental mechanistic understanding on Ag-catalysed cross-coupling reactions and dismiss the generally accepted conception that silver redox chemistry can only arise from one-electron processes.