Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Biomaterials, 26(27), p. 4547-4556

DOI: 10.1016/j.biomaterials.2006.04.036

Links

Tools

Export citation

Search in Google Scholar

Strong binding of bioactive BMP-2 to nanocrystalline diamond by physisorption

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nano-crystalline diamond (NCD)-coated surfaces were efficiently functionalized with bone morphogenetic protein-2 (BMP-2) by means of physisorption. Due to their randomly oriented texture, NCD-coated surfaces appear to bind complex molecules firmly. Applying various highly sensitive analytical methods, the interaction was found extremely stable. The strength of the experimentally measured adherence between BMP-2 and NCD was further corroborated by theoretical calculations. Oxygen treatment rendered NCD hydrophilic by the appearance of surface oxygen containing groups. This particular NCD surface exhibited even higher binding energies towards BMP-2 than the hydrophobic surface, and this surface was also favoured by cultured cells. Most importantly in this context, bound BMP-2 was found fully active. When cultured on BMP-2-treated NCD, osteosarcoma cells strongly up-regulated alkaline phosphatase, a specific marker for osteogenic differentiation. Hence, this simple method will allow generating highly versatile surfaces with complex biomimetic coatings, essentials for novel medical devices and implants as well as for innovative scaffolds in tissue engineering.