Dissemin is shutting down on January 1st, 2025

Published in

2014 International Workshop on Computational Electronics (IWCE)

DOI: 10.1109/iwce.2014.6865816

Links

Tools

Export citation

Search in Google Scholar

Time-domain Monte Carlo simulation of GaN planar Gunn nanodiodes in resonant circuits

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work we present a theoretical study based on time-domain Monte Carlo (MC) simulations of GaN-based Self-Switching Diodes (SSDs) oriented to the experimental achievement and control of the sub-THz Gunn-oscillations potentially provided by these devices. With this aim, an analysis of the frequency performance of SSDs connected to a resonant RLC parallel circuit, is reported here. V-shaped SSDs have been found to be more efficient, in terms of the DC to AC conversion efficiency η, than similar square-shape ones. Indeed, a value of η of at least 0.80%, can be achieved with appropriate RLC elements, even when considering heating effects. When the influence of parasitic elements such as the crosstalk capacitance Ctalk is evaluated, MC simulations have shown that the resonant circuit must contain a capacitance C higher than Ctalk in order to obtain experimentally useful values of η. This condition can be reached by integrating a sufficiently high number N of parallel SSDs in the fabricated devices. MC simulations have also shown that when several diodes are fabricated in parallel the oscillations of all the SSDs are not synchronized, but this problem is solved by the attachment of a resonant RLC tank.